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Abstract 

Probability density of the median of samples of even size is given. Examples 
from populations with uniform distribution and exponential distribution are 
presented. 

1. Introduction 

The probability density function (pdf) of the median of the samples of 
size ( )12 +k  from a population with pdf ( )xf  is given by 
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where ( ) ( ).xdFdxxf =  See [1]. It can be rewritten as 

( ) ( ) ( ) ( )( )
( ) ,1,1

1
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−= kkB
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where ( ) ( ) ( ) ( ).22111,1 +Γ+Γ+Γ=++ kkkkkB  An asymptotic distri-

bution ( ( ) ),41, 2nmfmN  the normal distribution with parameters m 

(the median of the population) and ( ) ,41 2nmf  is given for large sample 

size n. See [1]. But it is derived from ( )xg  for samples of odd size. The 

corresponding ( )xg  for samples of even size is not available in the 

literature. 

2. Median of Samples of Size 2k 

We give the exact pdf of the sample median for .2kn =  

Theorem 1. Let P be a population with pdf ( ).xf  The pdf of the 

median of samples of size 2k from P is given by 

( ) ( ) ( ) ( ) ( ) ( )( ) .1,
4 11

0
dhhxFhxFhxfhxfkkB

kxg kk −−∞
+−−+−= ∫  (3) 

Proof. Let m be the median of a sample { }.,,, 221 kxxx …  Then 

there exist, say ix  and ,jx  in the sample such that hmxi −=  and 

hmx j +=  for some 0≥h  and ( )1−k  elements less than or equal to ix  

and the rest greater than or equal to .jx  The probability for ix  to be in 

the interval [ ]dxhmhm +−− ,  and for ( )1−k  elements to be less than 

or equal to ix  is ( ) ( ) .1dxhmFhmf k−−−  Similar argument for jx  shows 

the probability for m to be in the interval [ ]dxxx +,  is proportional to 

the integral 
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Counting the number of all corresponding arrangements of the elements 
in the sample, we see the probability 
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Substituting the factor ( )k
kk 222  by ( ),,4 kkBk  we have 

( ) ( ) ( ) ( ) ( ) ( )( ) .1,
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Remark. The integral in the formula does not have a closed form in 
general and the subsequent estimation of the expected value, variance, 
and higher moments requires quadrature method. However, the 
following examples give relatively simple forms of ( ),xg  and direct 

evaluation of the integral is possible. 

Example 1. Uniform distribution on [ ],1,0  sample size 2k. If the 

population pdf ( ) [ ],1,0Ixf =  then 
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The expected value of sample median ( ) 2
11

0
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,1=k  we have 
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as expected. For ,2=k  we have 
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where ( ).1,min xxx −=α  The variance is .301  The asymptotic 

distribution ( )kN 81,21  overestimates the variance by three times for 

1=k  and by two times for .2=k  

Example 2. Exponential distribution, sample size 2k. Let the 
population pdf 
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The population median is log 2. It follows from the theorem that 
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For ,1=k  we have 
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the expected value 
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For ,2=k  we have 
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the expected value is 6
5  and the variance .72

17  The asymptotic 

distribution ( )kN 21,2log  has variance 41  for .2=k  
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